加入收藏 | 设为首页 | 会员中心 | 我要投稿 衢州站长网 (https://www.0570zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

如何解决机器学习树集成模型的解释性问题

发布时间:2019-10-23 22:29:14 所属栏目:建站 来源:SAMshare
导读:副标题#e# 【大咖·来了 第7期】10月24日晚8点观看《智能导购对话机器人实践》 01 机器学习模型不可解释的原因 前些天在同行交流群里,有个话题一直在群里热烈地讨论,那就是 如何解释机器学习模型 ,因为在风控领域,一个模型如果不能得到很好的解释一般都

这个数据集有这些特征:'CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT'

  1. # visualize the training set predictions  
  2. shap.force_plot(explainer.expected_value, shap_values, X) 

output:

如何解决机器学习树集成模型的解释性问题

上图可以看出每个特征之间的相互作用(输出图是可以交互的)。

但是为了理解单个特性如何影响模型的输出,我们可以将该特性的SHAP值与数据集中所有示例的特性值进行比较。由于SHAP值代表了模型输出中的一个特性的变化,下面的图代表了预测的房价随着RM(一个区域中每栋房子的平均房间数)的变化而变化的情况。

单一RM值的垂直色散表示与其他特征的相互作用。要帮助揭示这些交互依赖关系,dependence_plot 自动选择 另一个特征来着色。比如使用RAD着色,突显了RM(每户平均房数)对RAD的值较高地区的房价影响较小。

  1. """创建一个SHAP图用于展示 单一特征在整个数据集的表现情况,每个点代表一个样本"""  
  2. shap.dependence_plot("RM", shap_values, X) 

(编辑:衢州站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读