基于深度学习的图像超分辨率重建技术的研究
SRCNN(Super-Resolution Convolutional Neural Network)是首次在超分辨率重建领域应用卷积神经网络的深度学习模型。对于输入的一张低分辨率图像,SRCNN首先使用双立方插值将其放大至目标尺寸,然后利用一个三层的卷积神经网络去拟合低分辨率图像与高分辨率图像之间的非线性映射,最后将网络输出的结果作为重建后的高分辨率图像。SRCNN的网络结构如图2所示。 图2 SRCNN的网络结构 (2) ESPCN 与SRCNN不同,ESPCN (Real-Time Single Image and Video Super-Resolution Using an
Efficient Sub-Pixel Convolutional Neural
Network)在将低分辨率图像送入神经网络之前,无需对给定的低分辨率图像进行一个上采样过程,得到与目标高分辨率图像相同大小的低分辨率图像。如图3所示,ESPCN中引入一个亚像素卷积层(Sub-pixel
convolution layer),来间接实现图像的放大过程。这种做法极大降低了SRCNN的计算量,提高了重建效率。 (3) SRGAN 与上述两种方法类似,大部分基于深度学习的图像超分辨率重建技术使用均方误差作为其网络训练过程中使用的损失函数,但是由于均方差本身的性质,往往会导致复原出的图像出现高频信息丢失的问题。而生成对抗网络(Generative Adversarial Networks, GAN)则通过其中的鉴别器网络很好的解决了这个问题,GAN的优势就是生成符合视觉习惯的逼真图像,所以SRGAN (Photo-Realistic Single Image SuperResolution Using a Generative Adversarial Network)的作者就将GAN引入了图像超分辨率重建领域。 如图4所示,SRGAN也是由一个生成器和一个鉴别器组成。生成器负责合成高分辨率图像,鉴别器用于判断给定的图像是来自生成器还是真实样本。通过一个二元零和博弈的对抗过程,使得生成器能够将给定的低分辨率图像复原为高分辨率图像。 图4 SRGAN的网络结构 总结与展望 (编辑:衢州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |